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lsing' models with nearest neighbor ferromagnetic random couplings on a square 
lattice with a (1, 1) surface are studied, using Monte Carlo techniques and a 
star-triangle transformation method. In particular, the critical exponent of the 
surface magnetization is found to be close to that of the perfect model, fl~ = 1/2. 
The crossover from surface to bulk critical properties is discussed. 
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1. M O D E L  AND M E T H O D S  

The bulk critical behavior of the two-dimensional dilute Ising model has 
been studied extensively in recent years. ~-4) According to renormalization 
group calculations, the randomness leads, at least in the limit of weak dilu- 
tion, to logarithmic modifications of the asymptotic power-laws for various 
quantities in the perfect model, in agreement with results of Monte Carlo 
simulations (however, also conflicting interpretations of numerical results 
have been suggested and discussed). ~3' 5) In particular, the bulk magnetiza- 
tion, m b, is expected to vanish as 

m b w. t 1/8 I l n t l - ~ / ~ 6  (1) 

where t is the reduced temperature t = ( T ~ - T ) / T ~ .  

In this Communication we shall present findings on surface critical 
properties of nearest neighbor random spin-l/2 Ising models on a square 
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lattice with a surface. Randomness is introduced by allowing the nearest 
neighbor ferromagnetic couplings to take two values, J, and J2, where J, 
is greater or equal to J2. If both couplings occur with the same probability, 
then the model is self-dual. (6) The self-dual point is located at 

tanh(J,/T~) = exp( - 2J2/T~) (2) 

determining the critical temperature, if the model undergoes one phase tran- 
sition. Indeed, results of simulations (7) strongly support that assumption. 

Most of our findings are based on extensive Monte Carlo (MC) 
simulations, using single-spin and cluster-flip algorithms. To facilitate com- 
parison of the simulational data with those of our numerical evaluation of 
the star-triangle transformation (ST) method, ts' 9) we study the Ising model 
with a surface in the diagonal or ( l, 1 ) direction. In that case, the coordina- 
tion number of the surface spins is two. (Indeed, we believe the critical 
properties at this ordinary surface transition to be the same for the (1, l) 
and the (1, 0)direction, as it is known to be the case in the perfect model). 
In the simulations, we consider lattices consisting of K columns and L 
rows, where the first and last columns are surface lines; the first and last 
rows are connected by periodic boundary conditions. Usually, we set 
L =  K/2, with K ranging from 40 to 1280. The ST method, which was 
originally developed for layered lattices, ts) is generalized here to treat 
general inhomogeneous systems. In these calculations, K is proportional 
to the number of iterations and goes to infinity, while L, the number of 
surface sites, remains finite. In both methods, M C and ST, one has to 
average over an ensemble of bond configurations. Typically, the number of 
realizations ranged, in the simulations, from about 20 to several hundreds, 
taking more configurations for smaller system sizes. In the single-spin flip 
algorithm, used away from T c, usually runs with a few l04 Monte Carlo 
steps per site were performed. Closer to T~, the more efficient one-cluster 
spin flip method was applied, taking into account several l04 clusters per 
realization. Note that the statistical errors during a MC run turned out to 
be significantly smaller than those resulting from the ensemble averaging. 
We tested different random number generators to avoid inaccuracies due to 
a, possibly, unfortunate choice of the generator. ('~ 

The crucial quantity, computed in the MC simulations, is the magne- 
tization per column, m(i)=<]~.,s~,jl>/L, where s~,j denotes the spin in 
column i and row j, with i=  1, 2,..., K, and summing over j =  1, 2,..., L. 
Applying the ST method, we calculated, in particular, the surface magne- 
tization m, = m( 1 ). 

In the following, we discuss the results of the M C simulations. The, so 
far rather preliminary, findings obtained from the ST method are in very 



Surface Critical Behavior of 2D Dilute Ising Models 1081 

good agreement, demonstrating the correctness and accuracy of the two 
approaches. 

2. R E S U L T S  

The simulations were performed at r=J2 /J~=l ,  1/4, and 1/10, 
monitoring the effect of increasing randomness on the critical surface 
properties. 

In all cases, the magnetization per column, rn(i), decreases as one 
moves from the bulk towards the surface, as illustrated in Fig. 1. For suf- 
ficiently wide systems, K, the magnetization profile re(i) displays a plateau 
around the center, i =  K/2, with the height being near the bulk magnetiza- 
tion, mb. The bulk magnetization is expected to be approached very closely 
at a distance I from the surface, with the bulk correlation length determining 
that distance, t ~  

In the thermodynamic limit, on approach to the bulk critical tem- 
perature, To, equation (2), m(i) goes to zero. Close to To, one may describe 
m(i) by an effective power-law behavior, m(i)oc t pti~. Asymptotically, for 
sufficiently small values of t, one has f l (1)= fl~, and fl(i)= fl for i >  l and 
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Fig. 1. Magnetization profiles for J2/Ji-'-l/4, at  various temperatures, t=0.05, 0.15, 

and 0.3, from bottom to top. MC systems of sizes L = 80 and K = 160 were simulated. 
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i < K - / .  In general, one may define an effective, temperature dependent 
critical exponent, fl(i)ar, by 

fl(i)efr = d/n[ m( i) ]~din[ t ] (3) 

with the effective exponent becoming the asymptotic exponent as t 
vanishes. Certainly, in the MC study, fl(i)efr can be only approximated from 
data at discrete temperatures, say, t and t + At. The resulting value of the 
effective exponent is ascribed to the temperature t +(z/t /2) (examples are 
shown in Fig. 2). Since we are interested in the behavior in the thermo- 
dynamic limit, the linear dimensions K and L have to be sufficiently large 
compared to the bulk and surface correlation lengths. Actually, to avoid 
finite size effects, we chose system sizes with L increasing approximately 
linearly with 1/ /as  one moves towards To. 

In the perfect case, r = l, our MC data for the magnetization re(i) as 
well as the estimates for fl(1)efr, fl(2)ar, and the effective exponent of the 
bulk magnetization, flat agree excellently with the exact results, (12" 13) see 
Fig. 3 ~(where we did not include the simulational data), approaching 
smoothly, in the limit of small t, the asymptotic exponents for the surface 
fl(1) =fl~ = 1/2 and the bulk f l=  1/8. Note that fl(i)ar decreases with i, at 
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Fig. 2. Effective exponent of the magnetization per column, for J2/J! = 1/4, at reduced criti- 
cal temperatures t =0.275, 0.175 and 0.075, from bottom to top. Systems with K= 160 have 
been simulated. 
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Fig. 3. Effective exponents for the surface and bulk magnetizations, for JE/J)= 1 (solid lines, 
exact results), 1/4 (full symbols), and 1/10 (open symbols). The dotted lines denote the 
asymptotic values of the perfect case. Systems with K=80 (down triangles), 160 (up tri- 
angles), 320 (diamonds), 640 (circles), and 1280 (squares) have been simulated. The error bars 
result from ensemble averaging. 

fixed temperature, t >0 .  There is an interesting crossover phenomenon 
(which has not, to our knowledge, been studied exactly, so far) in that 
effective exponent, being asymptotically either 1/2 or 1/8, see Fig. 2. The 
crossover occurs at a distance from the surface reflecting the bulk correla- 
tion length (that length diverges asymptotically like 1/t, i.e. in the same 
fashion as the surface correlation length). 

The effective exponents of the bulk and surface magnetizations, as 
obtained from the simulations, for the dilute cases r = J2/Yl = 1/4 and 1/10 
are shown in Fig. 3. For r = 1/4, the values of the exponents, especially of 
fl(1)err, follow near criticality rather closely those of the perfect model, 
r =  1, as a function of reduced temperature. However, perhaps most 
noticeably, the bulk critical exponent flefr superceeds the asymptotic critical 
value of the perfect case, f l =  1/8, at t <0.05, as had been observed 
before.(7. 14) Actually, the bulk magnetization data coincide with the pre- 
vious simulational results obtained for the two-dimensional random-bond 
Ising model with full periodic boundary  conditions. Accordingly, m b can be 
fitted to the ansatz (7) 

ml,=motl/8(1 + at)((1 +bin[lit]) -1/16 (4) 
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with mo = 1.203, a = - 0 . 1 8 3  and b=0.279, where b determines the cross- 
over temperature to the critical region dominated by randomness. On the 
other hand, the effective critical exponent of the surface magnetization m, 
continues to change gradually and smoothly, towards a value close to 1/2, 
as one enters that region. An asymptotic exponent fl~ = 1/2, as in the per- 
fect case, seems to be conceivable, without any logarithmic corrections to 
the simple power-law. 

At r = 1/10, i.e. at increased randomness, the effective exponent fl( 1 )~  
tends to change only mildly over a wide range of temperatures, 0.25 < 
t < 0.65, see Fig. 3. Going closer to T~, the exponents starts to increase 
more visibly. Again, an asymptotic value of fl~ = 1/2 is conceivable (cer- 
tainly, strictly speaking, each extrapolation to the limit of vanishing t ,  
requiring exceedingly large lattice sizes, is speculative). Note that ]~ar super- 
ceeds the bulk exponent of the perfect case, 1/8, now already at t < 0.12. 
Accordingly, We may safely argue to monitor, on further approach to T,, 
randomess-dominated critical behavior in the bulk and surface properties 
as well. Obyiously, in the case J2/J~ = 1/10, the results of the MC simula- 
tions do not indicate that the critical exponent of m, is strongly affected 
by randomness. A "reasonable" guess seems to be fl~ = 0.49, with an error 
bar of about 0.02. Note that the error bars depicted in Fig. 3 are very 
pessimistic, resulting from comparing the unfavorable <r-deviations of the 
magnetizations at consecutive temperatures. Standard, more optimistic, 
error analyses would reduce the size of the error bars by an appreciable 
amount. 

In summary, we conclude that our extensive MC simulations on two- 
dimensional random-bond Ising models with a (1, 1) surface provide no 
compelling evidence for asymptotic critical exponents depending strongly 
on the degree of dilution, i.e. the ratio of the strength of the two different 
coupling constants. It seems well conceivable that the surface magnetization 
follows the same power-law behavior as in the perfect case, with/?~ = 1/2, 
without any logarithmic modifications. A detailed analysis, including 
results from the star-triangle method for the surface magnetization and the 
critical surface spin correlations, will be published elsewhere. 
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